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Abstract  
 
The scientific goal of the full proposal focused on the development of a new cognitive architecture – 
which has since been named Sigma (Σ) – that is based on graphical models, with a specific emphasis 
on the hybrid (combining continuous signal processing and discrete symbol processing) mixed 
(combining probabilistic representations of uncertainty with symbolic representations of knowledge) 
challenge of supporting robust situation assessment and prediction (SAP). Task 1, which was the one 
funded, specifically concerned the representation and processing of mental imagery in Sigma.  The 
multi-year objectives of this task were to: (1) develop a means of representing mental imagery that 
leverages Sigma’s unique capabilities and that is closely integrated with it (and that extends it to 
include (mixtures of) Gaussians for noisy continuous images); (2) implement mental imagery 
transformations – such as translation, scaling and rotation – within Sigma; and (3) produce 
predictions based on mental imagery, both in isolation and in conjunction with input about external 
reality. 
 
Except for the extension to Gaussians, these objectives were achieved, with 1D, 2D and 3D mental 
imagery grounded directly in the multidimensional piecewise-linear functions that are at the core of 
Sigma, and the standard imagery transformations modifying the locations of the boundaries between 
the regions of these functions.  This combination surprisingly turned out to be general enough to 
support significant forms of processing that weren’t originally conceived of as imagery, but which 
used numeric (metric) dimensions – such as initializing, and returning results from, subgoals and 
processing rewards and value functions in reinforcement learning – with the transformations turning 
out to directly yield a primitive form of mental arithmetic on these dimensions.  In conjunction with 
Sigma’s graphical models, we were also able to go beyond the simple image transformations that had 
been proposed to incremental image composition and extraction of critical spatial properties from 
these composites.  We were furthermore able to demonstrate combinations of prediction and 
perception in localization tasks – for example, in simultaneous localization and mapping (SLAM) – and 
to go beyond what was originally proposed in demonstrating learning to predict in the context of 
mental imagery. 
 
 
Introduction  
 
The development of Sigma is being driven by three general desiderata: grand unification (uniting the 
requisite cognitive and non-cognitive aspects of embodied intelligent behavior); functional elegance 
(exhibiting a broad set of capabilities while remaining fundamentally simple and theoretically 
elegant); and sufficient efficiency (behaving rapidly enough for anticipated applications).  The 
ultimate goal is an architecture that leverages a small but general set of mechanisms – effectively 
defining a form of cognitive Newton’s laws – to span from perception through cognition to action.  
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Such an architecture should be a major step forward in developing intelligent agents/robots and 
virtual humans.  It should also yield a new, more integrated and hopefully more effective, approach 
to complex but more specialized activities such as situation assessment and prediction. 
 
The work funded by this grant ended up reflecting all three of the above desiderata.  The intent was 
to explore grand unification by understanding how to support mental imagery that bridges perception 
and cognition.  Functional elegance was key in determining that mental imagery should be 
approached via the same core representation – multidimensional piecewise-linear functions – and 
reasoning algorithm (a message passing approach based on the summary product algorithm over 
factor graphs) used for all other processing in Sigma.  (Introductions to Sigma and to its use of both 
piecewise-linear functions and summary product over factor graphs can be found in the attached 
publications.)  Sufficient efficiency came in to the picture with the development and implementation 
of a new sparse(r) representation for piecewise-linear functions that shows potential for yielding 
significant speedups in mental imagery tasks.  Success in achieving the main objectives of this task 
brings us closer to systems that can effectively exploit high-level cognition in complex spatial 
environments. 
 
Results and Discussion 
 
Most of the results produced over the three years of this grant are described in the attached 
publications.  These include representation of 1-3D continuous (and discrete) imagery buffers as 
piecewise-linear functions; implementation of affine transformations that enable translation, scaling, 
reflection and rotation (by multiples of 90°); synthesizing multiple images into new composite images, 
along with adding and deleting specific sub-objects; extracting spatial properties from these 
composites, such as edges, overlaps and relative directions; leveraging mental imagery in both 
problem solving and learning (papers on these topics received Kurzweil Awards at the annual Artificial 
General Intelligence (AGI) conference in 2011 and 2012); and the use of mental imagery in both 
classical cognitive tasks – such as the Eight Puzzle – and in (simulated) robotics tasks that involve 
perception, localization, mapping and action selection.  Because this work is well documented in the 
attached publications, it won’t be described further here.  Instead, following a brief discussion of 
integrating Gaussians into Sigma, a description will be provided of recent, and still very preliminary, 
unpublished work on the new sparse(r) representation for piecewise-linear functions, before popping 
back up to explore possible follow-on/future work. 
 
As mentioned in the introduction, Sigma uses a message-passing scheme – based on the summary 
product algorithm – to structure computations on factor graphs.  The messages, as well as the factor 
functions themselves – except in specially optimized cases, such as are used for affine transforms – 
are instantiated as piecewise-linear functions.  Considerable thought has gone into how to 
incorporate (mixtures of) Gaussian’s into this existing function representation, and into whether other 
representations for continuous functions, such as particle filters, would be even better.  Sigma can 
already represent continuous functions as closely as desired by approximating them in a piecewise 
linear manner, but at the potential cost of many regions.  The key questions here were whether 
Gaussians (or other possibilities) would yield a more compact, and thus more efficiently processed, 
representation for noisy images, and how such a capability could be integrated with the existing 
representation.  Although some conceptual progress has been made on this problem, it did not yield 
concrete results during the period of this grant. 
 
Progress has instead been made on a sparse(r) representation for piecewise-linear functions that was 
not originally proposed, but whose importance became obvious as the work on mental imagery was 
pursued.  Because message passing is the main computational workhorse in Sigma, the data 
structures used to represent these functions are critical.  For some time, such functions have been 
represented as multidimensional arrays of orthotopic regions, each of which is doubly linked along 
each of its dimensions (Figure 1).  This representation allows slicing of functions at arbitrary points – 
to define regions that extend across a large area of repeated values, saving space and computation 
time – but requires slices that span the entire dimension.  This yields an array of regions at the 
expense of more partitioning of regions than would strictly be necessary just to represent the function 
via regions.  This may also, and more critically, lead to a large number of regions with the same 



value (usually zero), as in Figure 1, which has four zero-valued regions. 

 
What has recently been developed and implemented is a sparse(r) representation1 that combines a 
default value for regions, typically zero, with explicit representation of only those regions whose 
functions differ from this value (Figure 2).  This yields efficiency improvements by omitting the 
explicit representation and processing of default regions; and by eliminating the need for an array of 
regions, and thus for partitioning regions with uniform functions simply because other regions have 
more restricted spans.  Both of these optimizations are evident in comparing Figures 1 and 2, where 
the default (zero) valued regions disappear in moving to Figure 2, and pairs of adjacent regions with 
the same function are coalesced. 
 
Such an optimization is particularly crucial 
for forms of mental imagery, such as when 
a composite image is represented as a 
stack of occupancy planes – one per 
object – as, for example, shown for the 
Eight Puzzle in Figure 3.  Here, each tile 
(including the blank) yields one plane, 
with only one region of a plane non-zero, 
corresponding to where its tile is located.  
The existing representation requires slicing 
this 3D structure – of 9 2D planes – into 
81 regions.  With the new sparse 
representation, only 9 regions are required 
along with a default value of zero. 
 
Instead of a doubly linked array of regions, 
with region boundaries determined by 
dimension-spanning slices, the sparse 
representation maintains a simple list of all 
of the non-default regions plus an ordered 
list of projections along each dimension.  
Each projection includes the minimum and 
maximum value along that dimension for a 
region, along with a pointer to the region. 
 
The two main operations that must be implemented for the summary product algorithm are 
combination (taking two functions and combining their values; typically via product, but sometimes 
                                            
1 The existing representation is already somewhat sparse due to its ability to group together large regions with 
the same value, unlike a truly dense array representation that would represent every single square separately 
down to some resolution. 

Figure	  2:	  Sparse(r)	  representation	  with	  explicit	  
orthotopic	  regions	  for	  areas	  with	  non-‐default	  (i.e.,	  

non-‐zero)	  functions. 

Figure	  3:	  Eight	  Puzzle	  board	  as	  two	  continuous	  dimensions	  
(x	  and	  y)	  and	  one	  discrete	  dimension	  (tile),	  yielding	  a	  stack	  
of	  continuous	  planes,	  one	  per	  tile.	   	   Only	  the	  region	  in	  each	  

plane	  spanned	  by	  its	  tile	  has	  a	  non-‐zero	  (grey)	  value. 

Figure	  1:	  Existing	  representation	  of	  piecewise-‐linear	  
functions	  as	  multidimensional	  doubly	  linked	  arrays	  

of	  orthotopic	  regions. 



via addition or other operations) 
and summarization (taking a 
single function and eliminating a 
dimension; typically via 
integration – or summation for 
discrete dimensions – or 
maximum).  Using product for 
combination and 
integration/summation for 
summarization yields variable 
marginals, while using maximum 
(with combination still via 
product) yields maximum a priori 
(MAP) estimation. 
 
In a combination operation, 
there are two input functions – call them 
A and B – and a combination function 
(suppose it’s product).  Six sets of 
values must be computed: (1) the 
default value for the result, which is 
simply the product of the default values 
for A and B; (2) the regions obtained by 
an intersection of a region from A with a 
region from B, whose value is the 
product of the two intersecting regions; 
(3) the regions in A which do not 
intersect regions in B, so that they can 
simply be copied and multiplied by B’s 
default value; (4) similarly, regions in B 
not intersecting anything in A; (5) 
fragments from regions in A which 
partially intersect regions in B, forcing us 
to break off the parts which do not, and 
give them values as in group 3; (6) 
similar fragments from B.  The two 
critical processes in computing these sets 
are finding intersecting (and non-intersecting) regions, 
and breaking apart regions to deal with partial overlap. 
 
Finding intersecting regions is akin to the problem of 
detecting collisions in graphics.  Here there are two 
lists of multidimensional orthotopic objects, and we 
must determine which objects from the first list overlap 
with those in the second list.  The projection index is 
used to prune the search for intersections.  One 
dimension is chosen and the sorted projection lists for A 
and B along that dimension are traversed (Figure 4).  If 
a region in A intersects a region in B, then they’ll have 
an intersecting projection, so this can be used as a first 
pass to find candidate intersections (Figure 5).  
However, false positives must then be removed by 
doing a full intersection check (Figure 6). 
 
Once the overlapping regions have been found, they 
must be split up.  Splitting a region from A into parts 
that intersect with regions in B and non-intersecting parts is not too difficult, but a little care is 

Figure	  4:	  Choosing	  a	  dimension	  along	  which	  to	  traverse	  the	  sorted	  
projection	  lists	  for	  generating	  candidate	  region	  overlaps. 

Figure	  5:	  Determining	  candidate	  pairs	  of	  overlapping	  regions	  
based	  on	  projection	  lists. 

Figure	  6:	  Eliminating	  false	  candidates	  by	  
checking	  other	  dimensions. 



needed to ensure the resulting number of regions is linear in the number of dimensions rather than 
exponential. An easy mistake is to split in all dimensions at once.  Splitting in each dimension like 
this results in O(2d) new regions, where d is the number of dimensions (Figure 7). A better strategy is 
to break off regions in one dimension at a time, resulting in O(d) regions (Figure 8). 
 
Summarization is a subtly 
different process from 
combination.  Given a single 
piecewise function, the 
intersections of its regions 
with itself must be found, 
ignoring the dimension that 
is being 
integrated/maximized away 
(Figure 9).  Having found 
these intersections-to-be, the 
regions then need to be split 
in preparation for 
combining the 
intersecting regions 
along that dimension.  
So, both major 
aspects of the 
combination 
algorithm are 
mirrored, except 
that in the case of 

summarization, the function is compared to itself rather 
than to another function, and a specific dimension is 
ignored.  It proved possible to develop general versions 
of these two operations, so that summarization and 
combination leverage the same code. 
 
In preliminary results, four existing Sigma models have 
been tested to provide an initial indication of the speed 
differences between the sparse and existing formats: a 
simple naïve Bayes setup, an affine transform test, an 
Eight Puzzle example, and a shift-reduce parser.  The 
second and third models are directly relevant to mental 
imagery. 
 
These tests were run within Sigma 12, an older version 
(dating from October 2012) within which the sparse 
representation was implemented (a port to Sigma 27, 
the most recent version, is in progress).  Considerable 
effort has been put into general optimizations of Sigma 
in the past year, which didn’t find their way back into 
Sigma 12, but the relative comparisons between the two 
representations within this single version should still be 
illustrative. 
 
Table 1 shows the preliminary results for the two mental imagery tasks.  The table shows the 
percent of non-empty regions per message in the existing representation – providing a rough 
maximum on the speed up that is possible with the sparse representation – plus the average runtime 
(over 3 runs) for the existing and sparse representations, and the percent improvement in runtime. 
The variance is fairly low, so this gives a decent picture. 
  

Figure	  9:	  A	  quick	  look	  at	  integration. 

Figure	  7:	  Creating	  all	  region	  splits	  at	  once. 

Figure	  8:	  First	  splitting	  horizontally,	  and	  then	  splitting	  the	  still-‐overlapping	  parts	  
vertically. 



Table	  1:	  Preliminary	  experimental	  results	  with	  the	  sparse	  representation	  in	  mental	  imagery	  tasks.	  

 
 

Affine Eight Puzzle 

Sparsity (% zero regions) 77% 96% 

Existing time (sec) 0.15 2.88 

Sparse time (sec) 0.07 0.89 

Time Savings (%) 53% 69% 

 
 
Both of these tasks show a significant speedup – by a factor of 2-3 – although both also fall short of 
their potential maximum speedup.  Our lead hypothesis at this point for why these speedups fall 
short stems from the sparse representation’s higher cost per (explicit) region in determining which 
regions overlap.  There are optimizations under consideration that should significantly ameliorate this, 
but this is left to future work.  In general, the existing representation is more mature, and has thus 
gone through more representation-specific optimization over the years.  With further optimization of 
the sparse representation, the time percentages may more closely approach the sparsity percentages. 
 
Table 2 shows the preliminary results for the other two tasks, both of which are slower – with the 
parser being much slower – when the sparse representation is used.  The naïve Bayes task is almost 
twice as slow, with the explanation likely being the same as just discussed for the mental imagery 
tasks, but with the reduced sparseness here leading to a slowdown rather than just to a reduced 
speedup.  The same issue almost certainly exists in the parser as well, but there must be at least 
one additional issue causing this rather sparse problem to slow down by a factor of 20.  Further 
analysis has yielded one possibility, concerning the detection of duplicate intersections during 
summarization, that may account for the excess slowdown.  This looks to be fixable, but has also 
been left to follow on work, as has determining whether there are any other issues involved, and thus 
optimizations to be investigated. 
 
Table	  2:	  Preliminary	  experimental	  results	  with	  the	  sparse	  representation	  in	  two	  other	  tasks.	  

 
 

Naïve Bayes Parsing 

Sparsity (% zero regions) 56% 82% 

Existing time (sec) 0.03 5.68 

Sparse time (sec) 0.05 115.91 

Time Savings (%) -40% -95% 

 
 
As the sparse representation is better understood, it may prove useful to explore hybrid graphs, in 
which different functions are represented in different manners in distinct parts of the factor graphs.  
It may also be worth considering other representations for piecewise-linear functions; for example, it 
may turn out that spatial trees – such as R-trees or BSP-trees – will provide a superior alternative to 
both of the representations discussed here.  
  
In addition to the potential for speedups, the sparse representation also sets the stage for two further 
important developments.  The first development is a generalization from orthotopic to polytopic 
regions, which should not only enable further coalescing of regions with identical functions – enabling 



fewer regions to be used in representing complex objects – but more importantly it should enable 
rotations that are not limited to multiples of 90° by providing a region representation whose 
boundaries need not be axially aligned.  The second development is the possibility of message 
passing that is more incremental, just forwarding regions of functions that have changed, and thus 
yielding even more efficiency.  Both of these are good candidates for follow on work. 
 
Beyond the sparse representation, this work as a whole on mental imagery has yielded an approach 
to incorporating continuous mental imagery into a cognitive architecture without simply bolting on a 
separate module with an API.  Sigma’s underlying mechanisms are functionally elegant enough to 
support mental imagery in a manner that is uniform with its other forms of processing, and thus 
integratable with them at a very fine granularity.  As such, it is an important overall step towards 
functionally elegant grand unification, with the development of the sparse representation also 
providing a key step towards sufficient efficiency.  One critical future direction along this general 
path is to return to the issue of a more compact and efficient representation for noisy continuous 
functions, whether via (mixtures of) Gaussian, particle filters, or some other approach.  The other 
critical future direction – and what was originally proposed as Task 2 on this effort – is integrating 
true visual perception, including behavior recognition and adaptation, into Sigma in a manner that 
meets the three desiderata mentioned in the introduction and combines synergistically with both 
mental imagery and higher level cognition. 
 
Sigma as a whole, through additional funding from the Army Research Laboratory (ARL) and the 
Office of Naval Research (ONR), is also making progress along other critical paths towards a cognitive 
architecture that meets the three desiderata.  This includes developing social capabilities within 
Sigma, such as Theory of Mind; broadening Sigma’s learning capabilities; developing models of 
speech recognition and language understanding that are integrated tightly with each other and with 
cognition; and developing prototype virtual humans.  We are constantly seeking functionally elegant 
paths towards increased grand unification and optimizations that lead it closer to sufficient efficiency.  
We are also now increasingly looking for useful applications of Sigma. 
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